skip to main content

SciTech ConnectSciTech Connect

Title: Exciton localization-delocalization transition in an extended dendrimer

Exciton-mediated quantum state transfer between the periphery and the core of an extended dendrimer is investigated numerically. By mapping the dynamics onto that of a linear chain, it is shown that a localization-delocalization transition arises for a critical value of the generation number G{sub c} ≈ 5. This transition originates in the quantum interferences experienced by the excitonic wave due to the multiple scatterings that arise each time the wave tunnels from one generation to another. These results suggest that only small-size dendrimers could be used for designing an efficient quantum communication protocol.
Authors:
 [1]
  1. Institut UTINAM, Université de Franche-Comté, CNRS UMR 6213, 25030 Besançon Cedex (France)
Publication Date:
OSTI Identifier:
22254173
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 139; Journal Issue: 23; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DYNAMICS; MULTIPLE SCATTERING; QUANTUM STATES