skip to main content

SciTech ConnectSciTech Connect

Title: Two-dimensional excitons in three-dimensional hexagonal boron nitride

The recombination processes of excitons in hexagonal boron nitride (hBN) have been probed using time-resolved photoluminescence. It was found that the theory for two-dimensional (2D) exciton recombination describes well the exciton dynamics in three-dimensional hBN. The exciton Bohr radius and binding energy deduced from the temperature dependent exciton recombination lifetime is around 8 Å and 740 meV, respectively. The effective masses of electrons and holes in 2D hBN deduced from the generalized relativistic dispersion relation of 2D systems are 0.54m{sub o}, which are remarkably consistent with the exciton reduced mass deduced from the experimental data. Our results illustrate that hBN represents an ideal platform to study the 2D optical properties as well as the relativistic properties of particles in a condensed matter system.
Authors:
; ;  [1] ; ;  [2]
  1. Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)
  2. Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506 (United States)
Publication Date:
OSTI Identifier:
22254134
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 103; Journal Issue: 19; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; BINDING ENERGY; BORON NITRIDES; ELECTRONS; EXCITONS; OPTICAL PROPERTIES; RECOMBINATION; TEMPERATURE DEPENDENCE