skip to main content

SciTech ConnectSciTech Connect

Title: Electrochemical control of creep in nanoporous gold

We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.
Authors:
;  [1]
  1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)
Publication Date:
OSTI Identifier:
22254042
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 103; Journal Issue: 20; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; CREEP; DILATOMETRY; ELECTROCHEMISTRY; GOLD; LIGAMENTS; SURFACES