skip to main content

SciTech ConnectSciTech Connect

Title: Enhanced sensitivity and contrast with bimodal atomic force microscopy with small and ultra-small amplitudes in ambient conditions

Here, we introduce bimodal atomic force microscopy operated with sub-nm and ultra-small, i.e., sub-angstrom, first and second mode amplitudes in ambient conditions. We show how the tip can be made to oscillate in the proximity of the surface and in perpetual contact with the adsorbed water layers while the second mode amplitude and phase provide enhanced contrast and sensitivity. Nonlinear and nonmonotonic behavior of the experimental observables is discussed theoretically with a view to high resolution, enhanced contrast, and minimally invasive mapping. Fractions of meV of energy dissipation are shown to provide contrast above the noise level.
Authors:
 [1]
  1. Departament de Disseny i Programació de Sistemes Electrònics, UPC-Universitat Politècnica de Catalunya Av. Bases, 61, 08242 Manresa (Barcelona) (Spain)
Publication Date:
OSTI Identifier:
22253890
Resource Type:
Journal Article
Resource Relation:
Journal Name: Applied Physics Letters; Journal Volume: 103; Journal Issue: 23; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AMPLITUDES; ATOMIC FORCE MICROSCOPY; ENERGY LOSSES; LAYERS; MEV RANGE; NOISE; NONLINEAR PROBLEMS; SENSITIVITY; WATER