skip to main content

Title: Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understandmore » the origin and nature of chemical phenomena.« less
Authors:
 [1] ;  [2] ;  [1] ;  [3]
  1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China)
  2. School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing (China)
  3. (United States)
Publication Date:
OSTI Identifier:
22253595
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 97 MATHEMATICAL METHODS AND COMPUTING; ALGORITHMS; DENSITY; DENSITY FUNCTIONAL METHOD; ELECTRON DENSITY; LAPLACIAN; REACTIVITY