skip to main content

SciTech ConnectSciTech Connect

Title: Distortion of power law blinking with binning and thresholding

Fluorescence intermittency is a random switching between emitting (on) and non-emitting (off) periods found for many single chromophores such as semiconductor quantum dots and organic molecules. The statistics of the duration of on- and off-periods are commonly determined by thresholding the emission time trace of a single chromophore and appear to be power law distributed. Here we test with the help of simulations if the experimentally determined power law distributions can actually reflect the underlying statistics. We find that with the experimentally limited time resolution real power law statistics with exponents α{sub on/off} ≳ 1.6, especially if α{sub on} ≠ α{sub off} would not be observed as such in the experimental data after binning and thresholding. Instead, a power law appearance could simply be obtained from the continuous distribution of intermediate intensity levels. This challenges much of the obtained data and the models describing the so-called power law blinking.
Authors:
; ;  [1]
  1. Molecular Nanophotonics Group, Institute of Experimental Physics I, Universität Leipzig, Linnéstraße 5, 04103 Leipzig (Germany)
Publication Date:
OSTI Identifier:
22253432
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 11; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY; FLUORESCENCE; QUANTUM DOTS; SIMULATION; TIME RESOLUTION