skip to main content

SciTech ConnectSciTech Connect

Title: Self-replenishing ability of cross-linked low surface energy polymer films investigated by a complementary experimental-simulation approach

Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. The same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new “air” beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiple-healing events, the self-replenishing efficiency, and the minimum “healing agent” concentration for a maximum recovery.
Authors:
; ; ;  [1] ;  [1] ;  [2] ;  [1] ;  [2]
  1. Laboratory of Materials and Interface Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven (Netherlands)
  2. (Netherlands)
Publication Date:
OSTI Identifier:
22253406
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 12; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; EFFICIENCY; FILMS; HEALING; POLYMERS; SIMULATION; SURFACE ENERGY; SURFACES; URETHANE; X-RAY PHOTOELECTRON SPECTROSCOPY