skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A quantitative quantum-chemical analysis tool for the distribution of mechanical force in molecules

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4870334· OSTI ID:22253317
;  [1]
  1. Interdisciplinary Center for Scientific Computing, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg (Germany)

The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

OSTI ID:
22253317
Journal Information:
Journal of Chemical Physics, Vol. 140, Issue 13; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English