skip to main content

SciTech ConnectSciTech Connect

Title: Dispersion relations for slow and fast resistive wall modes within the Haney-Freidberg model

The dispersion relation for the resistive wall modes (RWMs) is derived by using the trial function for the magnetic perturbation proposed in S. W. Haney and J. P. Freidberg, Phys. Fluids B 1, 1637 (1989). The Haney-Freidberg (HF) approach is additionally based on the expansion in d{sub w}/s≪1, where d{sub w} is the wall thickness and s is the skin depth. Here, the task is solved without this constraint. The derivation procedure is different too, but the final result is expressed in a similar form with the use of the quantities entering the HF relation. The latter is recovered from our more general relation as an asymptote at d{sub w}≪s, which proves the equivalence of the both approaches in this case. In the opposite limit (d{sub w}≫s), we obtain the growth rate γ of the RWMs as a function of γ{sub HF} calculated by the HF prescription. It is shown that γ∝γ{sub HF}{sup 2} and γ≫γ{sub HF} in this range. The proposed relations give γ for slow and fast RWMs in terms of the integrals calculated by the standard stability codes for toroidal systems with and without a perfectly conducting wall. Also, the links between the considered and existing toroidalmore » and cylindrical models are established with estimates explicitly showing the relevant dependencies.« less
Authors:
;  [1] ;  [2]
  1. National Research Centre “Kurchatov Institute,” Moscow 123182 (Russian Federation)
  2. (Russian Federation)
Publication Date:
OSTI Identifier:
22253310
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CYLINDRICAL CONFIGURATION; DISPERSION RELATIONS; LIMITING VALUES; PERTURBATION THEORY; STABILITY; THICKNESS; WALLS