skip to main content

SciTech ConnectSciTech Connect

Title: Embedding potentials for excited states of embedded species

Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed.
Authors:
 [1]
  1. Département de Chimie Physique, Université de Genève, 30, quai Ernest-Ansermet, CH-1211 Genève 4 (Switzerland)
Publication Date:
OSTI Identifier:
22253307
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DENSITY; ELECTRON DENSITY; EXCITATION; EXCITED STATES; GROUND STATES; LAGRANGE EQUATIONS