skip to main content

SciTech ConnectSciTech Connect

Title: Theory of third-order spectroscopic methods to extract detailed molecular orientational dynamics for planar surfaces and other uniaxial systems

Functionalized organic monolayers deposited on planar two-dimensional surfaces are important systems for studying ultrafast orientational motions and structures of interfacial molecules. Several studies have successfully observed the orientational relaxation of functionalized monolayers by fluorescence depolarization experiments and recently by polarization-resolved heterodyne detected vibrational transient grating (HDTG) experiments. In this article we provide a model-independent theory to extract orientational correlation functions unique to interfacial molecules and other uniaxial systems based on polarization-resolved resonant third-order spectroscopies, such as pump-probe spectroscopy, HDTG spectroscopy, and fluorescence depolarization experiment. It will be shown (in the small beam-crossing angle limit) that five measurements are necessary to completely characterize the monolayer's motions: I{sub ∥}(t) and I{sub ⊥}(t) with the incident beams normal to the surface, I{sub ∥}(t) and I{sub ⊥}(t) with a non-zero incident angle, and a time averaged linear dichroism measurement. Once these measurements are performed, two orientational correlation functions corresponding to in-plane and out-of-plane motions are obtained. The procedure is applicable not only for monolayers on flat surfaces, but any samples with uniaxial symmetry such as uniaxial liquid crystals and aligned planar bilayers. The theory is valid regardless of the nature of the actual molecular motions on interface. We then apply the general results tomore » wobbling-in-a-cone model, in which molecular motions are restricted to a limited range of angles. Within the context of the model, the cone angle, the tilt of the cone relative to the surface normal, and the orientational diffusion constant can be determined. The results are extended to describe analysis of experiments where the beams are not crossing in the small angle limit.« less
Authors:
;  [1]
  1. Department of Chemistry, Stanford University, Stanford, California 94305 (United States)
Publication Date:
OSTI Identifier:
22253273
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CORRELATION FUNCTIONS; DEPOLARIZATION; DEPOSITS; DICHROISM; FLUORESCENCE; LIQUID CRYSTALS; POLARIZATION; SPECTROSCOPY; SURFACES