skip to main content

SciTech ConnectSciTech Connect

Title: Investigation of giant magnetoconductance in organic devices based on hopping mechanism

We suggest a spin-dependent hopping mechanism which includes the effect of the external magnetic field as well as hyperfine interaction (HFI) to explain the observed giant magnetoconductance (MC) in non-magnetic organic devices. Based on the extended Marcus theory, we calculate the MC by using the master equation. It is found that a MC value as large as 91% is obtained under a low driving voltage. For suitable parameters, the theoretical results are in good agreement with the experimental data. Influences of the carrier density, HFI, and the carrier localization on the MC value are investigated. Especially, it is found that a low-dimensional structure of the organic materials is favorable to get a large MC value.
Authors:
; ;  [1]
  1. School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)
Publication Date:
OSTI Identifier:
22253174
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 14; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; CARRIER DENSITY; ELECTRIC POTENTIAL; EQUIPMENT; INTERACTIONS; MAGNETIC FIELDS; ORGANIC MATTER