skip to main content

SciTech ConnectSciTech Connect

Title: Electromagnetic energy conversion in downstream fronts from three dimensional kinetic reconnection

The electromagnetic energy equation is analyzed term by term in a 3D simulation of kinetic reconnection previously reported by Vapirev et al. [J. Geophys. Res.: Space Phys. 118, 1435 (2013)]. The evolution presents the usual 2D-like topological structures caused by an initial perturbation independent of the third dimension. However, downstream of the reconnection site, where the jetting plasma encounters the yet unperturbed pre-existing plasma, a downstream front is formed and made unstable by the strong density gradient and the unfavorable local acceleration field. The energy exchange between plasma and fields is most intense at the instability, reaching several pW/m{sup 3}, alternating between load (energy going from fields to particles) and generator (energy going from particles to fields) regions. Energy exchange is instead purely that of a load at the reconnection site itself in a region focused around the x-line and elongated along the separatrix surfaces. Poynting fluxes are generated at all energy exchange regions and travel away from the reconnection site transporting an energy signal of the order of about Sā‰ˆ10{sup āˆ’3}W/m{sup 2}.
Authors:
 [1] ; ;  [2] ;  [3] ;  [4]
  1. Departement Wiskunde, KU Leuven, Universiteit Leuven (Belgium)
  2. University of Colorado, Colorado 80309 (United States)
  3. High Performance Computing and Visualization (HPCViz) Department, KTH Royal Institute of Technology, Stockholm (Sweden)
  4. Swedish Institute of Space Physics, Uppsala (Sweden)
Publication Date:
OSTI Identifier:
22253076
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ACCELERATION; ENERGY CONVERSION; ENERGY TRANSFER; EQUATIONS; PERTURBATION THEORY; PLASMA; PLASMA INSTABILITY; SIGNALS; SIMULATION; TOPOLOGY