skip to main content

SciTech ConnectSciTech Connect

Title: Theoretical calculations and vibrational potential energy surface of 4-silaspiro(3,3)heptane

Theoretical computations have been carried out on 4-silaspiro(3,3)heptane (SSH) in order to calculate its molecular structure and conformational energies. The molecule has two puckered four-membered rings with dihedral angles of 34.2° and a tilt angle of 9.4° between the two rings. Energy calculations were carried out for different conformations of SSH. These results allowed the generation of a two-dimensional ring-puckering potential energy surface (PES) of the form V = a(x{sub 1}{sup 4} + x{sub 2}{sup 4}) – b(x{sub 1}{sup 2} + x{sub 2}{sup 2}) + cx{sub 1}{sup 2}x{sub 2}{sup 2}, where x{sub 1} and x{sub 2} are the ring-puckering coordinates for the two rings. The presence of sufficiently high potential energy barriers prevents the molecule from undergoing pseudorotation. The quantum states, wave functions, and predicted spectra resulting from the PESs were calculated.
Authors:
; ;  [1] ;  [2]
  1. Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States)
  2. Department of Military Technology, Finnish National Defence University, P.O. Box 7, 00861 Helsinki (Finland)
Publication Date:
OSTI Identifier:
22252985
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CALCULATION METHODS; MOLECULAR STRUCTURE; POTENTIAL ENERGY; QUANTUM STATES; SPECTRA; SURFACES; WAVE FUNCTIONS