The rate constant for radiative association of HF: Comparing quantum and classical dynamics
Radiative association for the formation of hydrogen fluoride through the A{sup 1}Π → X{sup 1}Σ{sup +} and X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transitions is studied using quantum and classical dynamics. The total thermal rate constant is obtained for temperatures from 10 K to 20 000 K. Agreement between semiclassical and quantum approaches is observed for the A{sup 1}Π → X{sup 1}Σ{sup +} rate constant above 2000 K. The agreement is explained by the fact that the corresponding cross section is free of resonances for this system. At temperatures below 2000 K we improve the agreement by implementing a simplified semiclassical expression for the rate constant, which includes a quantum corrected pair distribution. The rate coefficient for the X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transition is calculated using Breit–Wigner theory and a classical formula for the resonance and direct contributions, respectively. In comparison with quantum calculations the classical formula appears to overestimate the direct contribution to the rate constant by about 12% for this transition. Below about 450 K the resonance contribution is larger than the direct, and above that temperature the opposite holds. The biggest contribution from resonances is at the lowest temperature in the study, 10 K,more »
 Authors:

;
;
^{[1]}
 Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)
 Publication Date:
 OSTI Identifier:
 22252894
 Resource Type:
 Journal Article
 Resource Relation:
 Journal Name: Journal of Chemical Physics; Journal Volume: 140; Journal Issue: 18; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
 Country of Publication:
 United States
 Language:
 English
 Subject:
 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; COMPARATIVE EVALUATIONS; CROSS SECTIONS; HYDROGEN FLUORIDES; REACTION KINETICS; RESONANCE; SEMICLASSICAL APPROXIMATION