skip to main content

SciTech ConnectSciTech Connect

Title: Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. We show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.
Authors:
 [1] ;  [2] ;  [1] ;  [2] ; ; ; ; ; ;  [3] ;  [1] ;  [4] ;  [1] ;  [2] ; ; ;  [1] ;  [5] ;  [1] ;  [4] more »;  [6] « less
  1. LULI, École Polytechnique, CNRS, CEA, UPMC, route de Saclay, 91128 Palaiseau (France)
  2. (France)
  3. Univ. Bordeaux, CNRS, CEA, UMR 5107, F-33400 Talence (France)
  4. (Canada)
  5. INRS-EMT, Varennes, PQ J3X 1S2 (Canada)
  6. (Italy)
Publication Date:
OSTI Identifier:
22252168
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ACCELERATION; IRRADIATION; LASERS; LENGTH; PLASMA; PROTON BEAMS; PROTONS; PULSES; SIMULATION