skip to main content

Title: Survivability of dust in tokamaks: Dust transport in the divertor sheath

The survivability of dust being transported in the magnetized sheath near the divertor plate of a tokamak and its impact on the desired balance of erosion and redeposition for a steady-state reactor are investigated. Two different divertor scenarios are considered. The first is characterized by an energy flux perpendicular to the plate q{sub 0}≃1 MW/m{sup 2} typical of current short-pulse tokamaks. The second has q{sub 0}≃10 MW/m{sup 2} and is relevant to long-pulse machines like ITER or Demonstration Power Plant. It is shown that micrometer dust particles can survive rather easily near the plates of a divertor plasma with q{sub 0}≃1 MW/m{sup 2} because thermal radiation provides adequate cooling for the dust particle. On the other hand, the survivability of micrometer dust particles near the divertor plates is drastically reduced when q{sub 0}≃10 MW/m{sup 2}. Micrometer dust particles redeposit their material non-locally, leading to a net poloidal mass migration across the divertor. Smaller particles (with radius ∼0.1 μm) cannot survive near the divertor and redeposit their material locally. Bigger particle (with radius ∼10 μm) can instead survive partially and move outside the divertor strike points, thus causing a net loss of divertor material to dust accumulation inside the chamber and some non-local redeposition. The implications ofmore » these results for ITER are discussed.« less
Authors:
;  [1]
  1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
Publication Date:
OSTI Identifier:
22252091
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; DIVERTORS; DUSTS; ITER TOKAMAK; PLASMA; POWER PLANTS; PULSES; STEADY-STATE CONDITIONS; THERMAL RADIATION