skip to main content

SciTech ConnectSciTech Connect

Title: Finite-β simulation of microinstabilities

A new split-weight perturbative particle simulation scheme for finite-β plasmas in the presence of background inhomogeneities is presented. The scheme is an improvement over the original split-weight scheme, which splits the perturbed particle response into adiabatic and non-adiabatic parts to improve numerical properties. In the new scheme, by further separating out the adiabatic response of the particles associated with the quasi-static bending of the magnetic field lines in the presence of background inhomogeneities of the plasma, we are able to demonstrate the finite-β stabilization of drift waves and ion temperature gradient modes using a simple gyrokinetic particle code based on realistic fusion plasma parameters. However, for βm{sub i}/m{sub e} ≫ 1, it becomes necessary to use the electron skin-depth as the grid size of the simulation to achieve accuracy in solving the resulting equations, unless special numerical arrangement is made for the cancelling of the two large terms on the either side of the governing equation. The proposed scheme is most suitable for studying shear-Alfvén physics in general geometry using straight field line coordinates for microturbulence and magnetic reconnection problems.
Authors:
;  [1]
  1. Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)
Publication Date:
OSTI Identifier:
22252080
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; HIGH-BETA PLASMA; MAGNETIC FIELDS; MAGNETIC RECONNECTION; PLASMA SIMULATION; TEMPERATURE GRADIENTS; WAVE PROPAGATION