skip to main content

Title: Real viscosity effects in inertial confinement fusion target deuterium–tritium micro-implosions

We report on numerical studies of real viscous effects on the implosion characteristics of imploded DT micro-targets. We use the implicit ePLAS code to perform 2D simulations of spherical and slightly ellipsoidal DT shells on DT gas filled ∼40 μm diameter voids. Before their final implosions the shells have been nearly adiabatically compressed up to 10{sup 2} or 10{sup 3} g/cm{sup 3} densities. While the use of conventional artificial viscosity can lead to high central densities for initially spherical shells, we find that a real physical viscosity from ion-ion collisions can give a high (>20 keV) central temperature but severely reduced central density (<200 g/cm{sup 3}), while the elliptical shells evidence p = 2 distortion of the heated central fuel region. These results suggest that the general use of artificial viscosities in Inertial Confinement Fusion (ICF) modeling may have lead to overly optimistic yields for current NIF targets and that polar direct drive with more energy for the imploding capsule may be needed for ultimate ICF success.
Authors:
; ;  [1]
  1. Research Applications Corporation, Los Alamos, New Mexico 87544 (United States)
Publication Date:
OSTI Identifier:
22252066
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; CAPSULES; INERTIAL CONFINEMENT; ION BEAM TARGETS; ION-ION COLLISIONS; NUMERICAL ANALYSIS; SIMULATION