skip to main content

SciTech ConnectSciTech Connect

Title: Dynamic processes and polarizability of sodium atom in Debye plasmas

Dynamic processes including excitation and ionization, and spectrum parameters including the oscillator strengths, dipole polarizabilities from the orbital 3s,3p of sodium atom embedded in weakly coupled plasma are investigated in the entire energy range of a non-relativistic regime. The interaction between the valence electron and the atomic core is simulated by a model potential, and the plasma screening of the Coulomb interaction between charged particles is described by the Debye-Hückel model. The screening of Coulomb interactions reduces the number of bound states, decreases their binding energies, broadens their radial distribution of electron wave functions, and significantly changes the continuum wave functions including the amplitudes and phase-shift. These changes strongly affect the dipole matrix elements between the bound-bound and bound-continuum states, and even the oscillator strengths, the photo-ionization cross sections and the dipole polarizabilities. The plasma screening effect changes the interaction between the valence electron and the atomic core into a short-range potential. The energy behaviors of photo-ionization cross sections are unfolded, for instance, its low-energy behavior (obeying Wigner threshold law), and the appearance of multiple shape and virtual-state resonances when the upper bound states emerge into the continuum. The Combet-Farnoux and Cooper minima in the photo-ionization cross sections are alsomore » investigated, and here, the Cooper minima appear not only for the l→l+1 channel but also for l→l−1 one, different from that of hydrogen-like ions in a Debye plasma, which appear only in the l→l+1 channel. The total static electric dipole polarizabilities monotonously and dramatically increase with the plasma screening effect increasing, which are similar to those of hydrogen-like ions and lithium atom. Comparison of calculated results for the oscillator strength, the photo-ionization cross section and polarizability with the results of other authors, when available, is made.« less
Authors:
;  [1]
  1. School of Mathematics and Physics and Information Engineering, Jiaxing University, Jiaxing 314001 (China)
Publication Date:
OSTI Identifier:
22251980
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physics of Plasmas; Journal Volume: 21; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; BINDING ENERGY; BOUND STATE; CROSS SECTIONS; ELECTRIC DIPOLES; ELECTRONS; HYDROGEN; IONS; OSCILLATOR STRENGTHS; PHASE SHIFT; PLASMA; POLARIZABILITY; RELATIVISTIC RANGE; SPATIAL DISTRIBUTION; VIRTUAL STATES; WAVE FUNCTIONS