skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The application of sparse arrays in high frequency transcranial focused ultrasound therapy: A simulation study

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4829510· OSTI ID:22251861
;  [1]
  1. Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N3M5 (Canada)

Purpose: Transcranial focused ultrasound is an emerging therapeutic modality that can be used to perform noninvasive neurosurgical procedures. The current clinical transcranial phased array operates at 650 kHz, however the development of a higher frequency array would enable more precision, while reducing the risk of standing waves. However, the smaller wavelength and the skull's increased distortion at this frequency are problematic. It would require an order of magnitude more elements to create such an array. Random sparse arrays enable steering of a therapeutic array with fewer elements. However, the tradeoffs inherent in the use of sparsity in a transcranial phased array have not been systematically investigated and so the objective of this simulation study is to investigate the effect of sparsity on transcranial arrays at a frequency of 1.5 MHz that provides small focal spots for precise exposure control. Methods: Transcranial sonication simulations were conducted using a multilayer Rayleigh-Sommerfeld propagation model. Element size and element population were varied and the phased array's ability to steer was assessed. Results: The focal pressures decreased proportionally as elements were removed. However, off-focus hotspots were generated if a high degree of steering was attempted with very sparse arrays. A phased array consisting of 1588 elements 3 mm in size, a 10% population, was appropriate for steering up to 4 cm in all directions. However, a higher element population would be required if near-skull sonication is desired. Conclusions: This study demonstrated that the development of a sparse, hemispherical array at 1.5 MHz could enable more precision in therapies that utilize lower intensity sonications.

OSTI ID:
22251861
Journal Information:
Medical Physics, Vol. 40, Issue 12; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English