skip to main content

SciTech ConnectSciTech Connect

Title: A new bidirectional generalization of (2+1)-dimensional matrix k-constrained Kadomtsev-Petviashvili hierarchy

We introduce a new bidirectional generalization of (2+1)-dimensional k-constrained Kadomtsev-Petviashvili (KP) hierarchy ((2+1)-BDk-cKPH). This new hierarchy generalizes (2+1)-dimensional k-cKP hierarchy, (t{sub A}, τ{sub B}) and (γ{sub A}, σ{sub B}) matrix hierarchies. (2+1)-BDk-cKPH contains a new matrix (1+1)-k-constrained KP hierarchy. Some members of (2+1)-BDk-cKPH are also listed. In particular, it contains matrix generalizations of Davey-Stewartson (DS) systems, (2+1)-dimensional modified Korteweg-de Vries equation and the Nizhnik equation. (2+1)-BDk-cKPH also includes new matrix (2+1)-dimensional generalizations of the Yajima-Oikawa and Melnikov systems. Binary Darboux Transformation Dressing Method is also proposed for construction of exact solutions for equations from (2+1)-BDk-cKPH. As an example the exact form of multi-soliton solutions for vector generalization of the DS system is given.
Authors:
;  [1]
  1. Ivan Franko National University of L’viv, 1, Universytetska St., Lviv 79000 (Ukraine)
Publication Date:
OSTI Identifier:
22251847
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 54; Journal Issue: 11; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EXACT SOLUTIONS; KORTEWEG-DE VRIES EQUATION; MATRICES; ONE-DIMENSIONAL CALCULATIONS; SOLITONS; VECTORS