skip to main content

Title: The backward phase flow method for the Eulerian finite time Lyapunov exponent computations

We propose a simple Eulerian approach to compute the moderate to long time flow map for approximating the Lyapunov exponent of a (periodic or aperiodic) dynamical system. The idea is to generalize a recently proposed backward phase flow method which is specially designed for long time level set propagation. Unlike the original phase flow method or the backward phase flow method, which is applicable only to autonomous systems, the current approach can also be applied to any time-dependent (periodic or aperiodic) flow. We will discuss the stability of the proposed method. Numerical examples will be given to demonstrate the effectiveness of the algorithm.
Authors:
 [1]
  1. Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)
Publication Date:
OSTI Identifier:
22251746
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chaos (Woodbury, N. Y.); Journal Volume: 23; Journal Issue: 4; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; APPROXIMATIONS; LYAPUNOV METHOD; PERIODICITY; STABILITY; TIME DEPENDENCE