skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tunable power law in the desynchronization events of coupled chaotic electronic circuits

Journal Article · · Chaos (Woodbury, N. Y.)
DOI:https://doi.org/10.1063/1.4861815· OSTI ID:22251691
; ; ; ;  [1]
  1. Departamento de Física, Universidade Federal da Paraíba, 58051-900 João Pessoa, PB (Brazil)

We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: weak coupling yields independent oscillations; moderate to strong coupling produces a regime of intermittent synchronization known as attractor bubbling; and stronger coupling produces complete synchronization. In the regime of moderate coupling, the probability distribution for the sizes of desynchronization events follows a power law, with an exponent that can be adjusted by changing the coupling strength. Such power-law distributions are interesting, as they appear in many complex systems. However, most of the systems with such a behavior have a fixed value for the exponent of the power law, while here we present an example of a system where the exponent of the power law is easily tuned in real time.

OSTI ID:
22251691
Journal Information:
Chaos (Woodbury, N. Y.), Vol. 24, Issue 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 1054-1500
Country of Publication:
United States
Language:
English