skip to main content

Title: Calculation of self-diffusion coefficients in iron

On the basis of available P-V-T equation of state of iron, the temperature and pressure dependence of self-diffusion coefficients in iron polymorphs (α, δ, γ and ε phases) have been successfully reproduced in terms of the bulk elastic and expansivity data by means of a thermodynamical model that interconnects point defects parameters with bulk properties. The calculated diffusion parameters, such as self-diffusion coefficient, activation energy and activation volume over a broad temperature range (500-2500 K) and pressure range (0-100 GPa), compare favorably well with experimental or theoretical ones when the uncertainties are considered.
Authors:
 [1]
  1. Laboratory for High Temperature and High Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, China and Institute for Study of the Earth's Interior, Okayama University, Misasa, Tottori-ken 682-0193 (Japan)
Publication Date:
OSTI Identifier:
22251622
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 1; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; ACTIVATION ENERGY; EQUATIONS OF STATE; IRON; POINT DEFECTS; PRESSURE DEPENDENCE; SELF-DIFFUSION; TEMPERATURE RANGE