skip to main content

SciTech ConnectSciTech Connect

Title: A portable, stable and precise laser differential refractometer

In this work, we present a portable laser differential refractometer with real-time detection and high precision based on the Snell's law and a 2f-2f optical design. The 2f-2f configuration solves a traditional position drifting problem of the laser beam and enhances the signal stability, where a small pinhole is illuminated by the laser light and imaged to the detector by lens placed in the middle between the detector and the pinhole. However, it also leads to a larger dimension of the instrument, limiting its applications and its sensitivity that is proportional to the optical path. Therefore, for a portable device on the basis of the 2f-2f design, a combination of a mirror and a lens was developed to minimize the optical path without affecting the 2f-2f design. Our simple and compact design reaches a resolution of 10{sup −6} refractive index units (RIU). Moreover, the dimension of such a modified differential refractometer is significantly reduced to be portable. Owing to its real-time detection speed and high precision, this newly developed refractometer is particularly attractive when it is used as an independent and ultra-sensitive detector in many research and industrial applications wherein there is a time-dependent concentration change, e.g., the concentration determination,more » quality control, and study of kinetic processes in solution, including adsorption, sedimentation, and dissolution, to name few but not limited.« less
Authors:
; ;  [1]
  1. Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)
Publication Date:
OSTI Identifier:
22251535
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 84; Journal Issue: 11; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; ACCURACY; ADSORPTION; CONCENTRATION RATIO; DESIGN; LASERS; LENSES; QUALITY CONTROL; REFRACTION; REFRACTIVE INDEX; TIME DEPENDENCE