skip to main content

SciTech ConnectSciTech Connect

Title: Non-dissociative activation of chemisorbed dinitrogen on Ni(110) by co-adsorbed lithium

Weakening the intramolecular N–N bond is essential to promote direct hydrogenation of adsorbed N{sub 2} on catalyst surfaces. The interaction of N{sub 2} with Li on Ni(110) surfaces has been investigated. We show that the N–N bond is significantly weakened with increasing Li coverage, evidenced by large redshifts in N–N stretch frequency of up to 380 cm{sup −1} compared to the gas phase. Some increased thermal stability of the most weakened N{sub 2,ads} states is also observed. We speculate that the various observed redshifts in N–N stretch frequency are associated with an enhanced backfilling of the 2π* antibonding orbital of N{sub 2} due to both the Li-induced surface electrostatic field, and the formation of Li{sub x}(N{sub 2}){sub y} surface complexes.
Authors:
; ; ;  [1]
  1. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)
Publication Date:
OSTI Identifier:
22251488
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 139; Journal Issue: 18; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CATALYSTS; CHEMISORPTION; HYDROGENATION; INTERACTIONS; LITHIUM; STABILITY; SURFACES