skip to main content

SciTech ConnectSciTech Connect

Title: Electron attachment to C{sub 2} fluorocarbon radicals at high temperature

Thermal electron attachment to the radical species C{sub 2}F{sub 3} and C{sub 2}F{sub 5} has been studied over the temperature range 300–890 K using the Variable Electron and Neutral Density Attachment Mass Spectrometry technique. Both radicals exclusively undergo dissociative attachment to yield F{sup −}. The rate constant for C{sub 2}F{sub 5} shows little dependence over the temperature range, remaining ∼4 × 10{sup −9} cm{sup 3} s{sup −1}. The rate constant for C{sub 2}F{sub 3} attachment rises steeply with temperature from 3 × 10{sup −11} cm{sup 3} s{sup −1} at 300 K to 1 × 10{sup −9} cm{sup 3} s{sup −1} at 890 K. The behaviors of both species at high temperature are in agreement with extrapolations previously made from data below 600 K using a recently developed kinetic modeling approach. Measurements were also made on C{sub 2}F{sub 3}Br and C{sub 2}F{sub 5}Br (used in this work as precursors to the radicals) over the same temperature range, and, for C{sub 2}F{sub 5}Br as a function of electron temperature. The attachment rate constants to both species rise with temperature following Arrhenius behavior. The attachment rate constant to C{sub 2}F{sub 5}Br falls with increasing electron temperature, in agreement with the kinetic modeling. The current data fall inmore » line with past predictions of the kinetic modeling approach, again showing the utility of this simplified approach.« less
Authors:
; ;  [1]
  1. Air Force Research Laboratory, Space Vehicle Directorate, Kirtland Air Force Base, New Mexico 87117 (United States)
Publication Date:
OSTI Identifier:
22251484
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Chemical Physics; Journal Volume: 139; Journal Issue: 18; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; DENSITY; ELECTRON TEMPERATURE; ELECTRONS; EXTRAPOLATION; FORECASTING; MASS SPECTROSCOPY; RADICALS; REACTION KINETICS; SIMULATION