skip to main content

SciTech ConnectSciTech Connect

Title: On the zero modes of the Faddeev-Popov operator in the Landau gauge

Following Henyey procedure [Phys. Rev. D 20, 1460 (1979)], we construct examples of zero modes of the Faddeev-Popov operator in the Landau gauge in Euclidean space in D dimensions, for both SU(2) and SU(3) groups. We obtain gauge field configurations A{sub μ}{sup a} which give rise to a field strength, F{sub μν}{sup a}=∂{sub μ}A{sub ν}{sup a}−∂{sub ν}A{sub μ}{sup a}+f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, whose nonlinear term, f{sup abc}A{sub μ}{sup b}A{sub ν}{sup c}, turns out to be non-vanishing. To our knowledge, this is the first time where such a non-abelian configuration is explicitly obtained in the case of SU(3) in 4D.
Authors:
 [1] ;  [2] ; ;  [1] ;  [3]
  1. Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Maracanã, Rio de Janeiro, RJ 20550-013 (Brazil)
  2. (Brazil)
  3. Centro Federal de Educação Tecnológica do Rio de Janeiro, Av. Maracanã 249, 20271-110, Rio de Janeiro, RJ (Brazil)
Publication Date:
OSTI Identifier:
22251408
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 2; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; EUCLIDEAN SPACE; GAUGE INVARIANCE; NONLINEAR PROBLEMS; SU-3 GROUPS