skip to main content

SciTech ConnectSciTech Connect

Title: Distribution of radiative crystal imperfections through a silicon ingot

Crystal imperfections limit the efficiency of multicrystalline silicon solar cells. Recombination through traps is more prominent in areas with high density of crystal imperfections. A method to visualize the distribution of radiative emission from Shockley Read Hall recombination in silicon is demonstrated. We use hyperspectral photoluminescence, a fast non-destructive method, to image radiatively active recombination processes on a set of 50 wafers through a silicon block. The defect related emission lines D1 and D2 may be detected together or alone. The D3 and D4 seem to be correlated if we assume that an emission at the similar energy as D3 (VID3) is caused by a separate mechanism. The content of interstitial iron (Fe{sub i}) correlates with D4. This method yields a spectral map of the inter band gap transitions, which opens up for a new way to characterize mechanisms related to loss of efficiency for solar cells processed from the block.
Authors:
; ; ;  [1] ;  [2]
  1. Norwegian University of Life Sciences, Dept. Mathematical Sciences and Technology, P.O. Box 5003, 1432 Ås (Norway)
  2. Institute for Energy Technology, Department of Solar Energy, P.O. Box 40, 2027 Kjeller (Norway)
Publication Date:
OSTI Identifier:
22251373
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 3; Journal Issue: 11; Other Information: (c) 2013 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CRYSTALS; DEFECTS; DENSITY; DISTRIBUTION; EFFICIENCY; IRON; PHOTOLUMINESCENCE; RECOMBINATION; SILICON; SILICON SOLAR CELLS