skip to main content

Title: Impact of network topology on synchrony of oscillatory power grids

Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.
Authors:
; ;  [1] ;  [1] ;  [2]
  1. Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany)
  2. (Germany)
Publication Date:
OSTI Identifier:
22251278
Resource Type:
Journal Article
Resource Relation:
Journal Name: Chaos (Woodbury, N. Y.); Journal Volume: 24; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; CAPACITY; GRIDS; LIMIT CYCLE; OUTAGES; POWER GENERATION; RANDOMNESS; STABILITY; STEADY-STATE CONDITIONS; SYNCHRONIZATION; TOPOLOGY