skip to main content

Title: Monotonicity of a relative Rényi entropy

We show that a recent definition of relative Rényi entropy is monotone under completely positive, trace preserving maps. This proves a recent conjecture of Müller-Lennert et al. [“On quantum Rényi entropies: A new definition, some properties,” J. Math. Phys. 54, 122203 (2013); e-print http://arxiv.org/abs/arXiv:1306.3142v1 ; see also e-print http://arxiv.org/abs/arXiv:1306.3142 ].
Authors:
 [1] ;  [2]
  1. Mathematics 253-37, Caltech, Pasadena, California 91125 (United States)
  2. Departments of Mathematics and Physics, Princeton University, Washington Road, Princeton, New Jersey 08544 (United States)
Publication Date:
OSTI Identifier:
22251254
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 54; Journal Issue: 12; Other Information: (c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ENTROPY; EXCITATION FUNCTIONS; MAPS