skip to main content

SciTech ConnectSciTech Connect

Title: A Fano cavity test for Monte Carlo proton transport algorithms

Purpose: In the scope of reference dosimetry of radiotherapy beams, Monte Carlo (MC) simulations are widely used to compute ionization chamber dose response accurately. Uncertainties related to the transport algorithm can be verified performing self-consistency tests, i.e., the so-called “Fano cavity test.” The Fano cavity test is based on the Fano theorem, which states that under charged particle equilibrium conditions, the charged particle fluence is independent of the mass density of the media as long as the cross-sections are uniform. Such tests have not been performed yet for MC codes simulating proton transport. The objectives of this study are to design a new Fano cavity test for proton MC and to implement the methodology in two MC codes: Geant4 and PENELOPE extended to protons (PENH). Methods: The new Fano test is designed to evaluate the accuracy of proton transport. Virtual particles with an energy ofE{sub 0} and a mass macroscopic cross section of (Σ)/(ρ) are transported, having the ability to generate protons with kinetic energy E{sub 0} and to be restored after each interaction, thus providing proton equilibrium. To perform the test, the authors use a simplified simulation model and rigorously demonstrate that the computed cavity dose per incident fluencemore » must equal (ΣE{sub 0})/(ρ) , as expected in classic Fano tests. The implementation of the test is performed in Geant4 and PENH. The geometry used for testing is a 10 × 10 cm{sup 2} parallel virtual field and a cavity (2 × 2 × 0.2 cm{sup 3} size) in a water phantom with dimensions large enough to ensure proton equilibrium. Results: For conservative user-defined simulation parameters (leading to small step sizes), both Geant4 and PENH pass the Fano cavity test within 0.1%. However, differences of 0.6% and 0.7% were observed for PENH and Geant4, respectively, using larger step sizes. For PENH, the difference is attributed to the random-hinge method that introduces an artificial energy straggling if step size is not small enough. Conclusions: Using conservative user-defined simulation parameters, both PENH and Geant4 pass the Fano cavity test for proton transport. Our methodology is applicable to any kind of charged particle, provided that the considered MC code is able to track the charged particle considered.« less
Authors:
 [1] ; ;  [2] ;  [3] ;  [4]
  1. Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels (Belgium)
  2. Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Université catholique de Louvain, ICTEAM institute, Chemin du cyclotron 6, 1348 Louvain-la-Neuve (Belgium)
  3. Université catholique de Louvain, Center of Molecular Imaging, Radiotherapy and Oncology, Institut de Recherche Experimentale et Clinique, Avenue Hippocrate 54, 1200 Brussels, Belgium and Département de Radiothérapie, Cliniques Universitaires Saint-Luc, Avenue Hippocrate 54, 1200 Brussels (Belgium)
  4. Département de radio-oncologie, Centre hospitalier de l’Université de Montréal (CHUM), 1560 Sherbrooke est, Montréal, Québec H2L 4M1 (Canada)
Publication Date:
OSTI Identifier:
22251234
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 1; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ACCIDENTS; ACCURACY; ALGORITHMS; AMINO ACIDS; CAVITIES; CHARGED PARTICLES; CROSS SECTIONS; DOSIMETRY; IONIZATION CHAMBERS; KINETIC ENERGY; MONTE CARLO METHOD; PARTICLE TRACKS; PHANTOMS; PROTON TRANSPORT; RADIOTHERAPY; SIMULATION; VIRTUAL PARTICLES