skip to main content

Title: Optimization of oxidation processes to improve crystalline silicon solar cell emitters

Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 10{sup 20} cm{sup −3} and 7.78 × 10{sup 20} cm{sup −3} and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%{sub abs} compared to conventional emitters with 50 Ω/□ sheet resistance.
Authors:
; ; ; ;  [1]
  1. School of Physics and Engineering, Institute for Solar Energy Systems, Sun Yat-sen University, 510275, Guangzhou (China)
Publication Date:
OSTI Identifier:
22251233
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 2; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; CONTROL; DEPOSITION; EFFICIENCY; ELECTRIC POTENTIAL; OPTIMIZATION; OXIDATION; PHOSPHORUS; SILICON SOLAR CELLS