skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction

Abstract

Purpose: The current widely used biological equivalent dose (BED) formalism for permanent implants is based on the linear-quadratic model that includes cell repair and repopulation but not resensitization (redistribution and reoxygenation). The authors propose a BED formalism that includes all the four biological effects (4Rs), and the authors propose how it can be used to calculate appropriate prescription doses for permanent implants with Cs-131. Methods: A resensitization correction was added to the BED calculation for permanent implants to account for 4Rs. Using the same BED, the prescription doses with Au-198, I-125, and Pd-103 were converted to the isoeffective Cs-131 prescription doses. The conversion factor F, ratio of the Cs-131 dose to the equivalent dose with the other reference isotope (F{sub r}: with resensitization, F{sub n}: without resensitization), was thus derived and used for actual prescription. Different values of biological parameters such as α, β, and relative biological effectiveness for different types of tumors were used for the calculation. Results: Prescription doses with I-125, Pd-103, and Au-198 ranging from 10 to 160 Gy were converted into prescription doses with Cs-131. The difference in dose conversion factors with (F{sub r}) and without (F{sub n}) resensitization was significant but varied with different isotopesmore » and different types of tumors. The conversion factors also varied with different doses. For I-125, the average values of F{sub r}/F{sub n} were 0.51/0.46, for fast growing tumors, and 0.88/0.77 for slow growing tumors. For Pd-103, the average values of F{sub r}/F{sub n} were 1.25/1.15 for fast growing tumors, and 1.28/1.22 for slow growing tumors. For Au-198, the average values of F{sub r}/F{sub n} were 1.08/1.25 for fast growing tumors, and 1.00/1.06 for slow growing tumors. Using the biological parameters for the HeLa/C4-I cells, the averaged value of F{sub r} was 1.07/1.11 (rounded to 1.1), and the averaged value of F{sub n} was 1.75/1.18. F{sub r} of 1.1 has been applied to gynecological cancer implants with expected acute reactions and outcomes as expected based on extensive experience with permanent implants. The calculation also gave the average Cs-131 dose of 126 Gy converted from the I-125 dose of 144 Gy for prostate implants. Conclusions: Inclusion of an allowance for resensitization led to significant dose corrections for Cs-131 permanent implants, and should be applied to prescription dose calculation. The adjustment of the Cs-131 prescription doses with resensitization correction for gynecological permanent implants was consistent with clinical experience and observations. However, the Cs-131 prescription doses converted from other implant doses can be further adjusted based on new experimental results, clinical observations, and clinical outcomes.« less

Authors:
; ; ; ;  [1]
  1. Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky 40536 (United States)
Publication Date:
OSTI Identifier:
22251150
Resource Type:
Journal Article
Journal Name:
Medical Physics
Additional Journal Information:
Journal Volume: 41; Journal Issue: 2; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-2405
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BRACHYTHERAPY; CESIUM 131; CORRECTIONS; DOSE EQUIVALENTS; FLUORINE 18; GOLD 198; IODINE 125; NEOPLASMS; PALLADIUM 103; PROSTATE; RADIATION DOSES; RADIATION SOURCE IMPLANTS

Citation Formats

Luo, Wei, Molloy, Janelle, Aryal, Prakash, Feddock, Jonathan, and Randall, Marcus. Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction. United States: N. p., 2014. Web. doi:10.1118/1.4860255.
Luo, Wei, Molloy, Janelle, Aryal, Prakash, Feddock, Jonathan, & Randall, Marcus. Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction. United States. https://doi.org/10.1118/1.4860255
Luo, Wei, Molloy, Janelle, Aryal, Prakash, Feddock, Jonathan, and Randall, Marcus. 2014. "Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction". United States. https://doi.org/10.1118/1.4860255.
@article{osti_22251150,
title = {Determination of prescription dose for Cs-131 permanent implants using the BED formalism including resensitization correction},
author = {Luo, Wei and Molloy, Janelle and Aryal, Prakash and Feddock, Jonathan and Randall, Marcus},
abstractNote = {Purpose: The current widely used biological equivalent dose (BED) formalism for permanent implants is based on the linear-quadratic model that includes cell repair and repopulation but not resensitization (redistribution and reoxygenation). The authors propose a BED formalism that includes all the four biological effects (4Rs), and the authors propose how it can be used to calculate appropriate prescription doses for permanent implants with Cs-131. Methods: A resensitization correction was added to the BED calculation for permanent implants to account for 4Rs. Using the same BED, the prescription doses with Au-198, I-125, and Pd-103 were converted to the isoeffective Cs-131 prescription doses. The conversion factor F, ratio of the Cs-131 dose to the equivalent dose with the other reference isotope (F{sub r}: with resensitization, F{sub n}: without resensitization), was thus derived and used for actual prescription. Different values of biological parameters such as α, β, and relative biological effectiveness for different types of tumors were used for the calculation. Results: Prescription doses with I-125, Pd-103, and Au-198 ranging from 10 to 160 Gy were converted into prescription doses with Cs-131. The difference in dose conversion factors with (F{sub r}) and without (F{sub n}) resensitization was significant but varied with different isotopes and different types of tumors. The conversion factors also varied with different doses. For I-125, the average values of F{sub r}/F{sub n} were 0.51/0.46, for fast growing tumors, and 0.88/0.77 for slow growing tumors. For Pd-103, the average values of F{sub r}/F{sub n} were 1.25/1.15 for fast growing tumors, and 1.28/1.22 for slow growing tumors. For Au-198, the average values of F{sub r}/F{sub n} were 1.08/1.25 for fast growing tumors, and 1.00/1.06 for slow growing tumors. Using the biological parameters for the HeLa/C4-I cells, the averaged value of F{sub r} was 1.07/1.11 (rounded to 1.1), and the averaged value of F{sub n} was 1.75/1.18. F{sub r} of 1.1 has been applied to gynecological cancer implants with expected acute reactions and outcomes as expected based on extensive experience with permanent implants. The calculation also gave the average Cs-131 dose of 126 Gy converted from the I-125 dose of 144 Gy for prostate implants. Conclusions: Inclusion of an allowance for resensitization led to significant dose corrections for Cs-131 permanent implants, and should be applied to prescription dose calculation. The adjustment of the Cs-131 prescription doses with resensitization correction for gynecological permanent implants was consistent with clinical experience and observations. However, the Cs-131 prescription doses converted from other implant doses can be further adjusted based on new experimental results, clinical observations, and clinical outcomes.},
doi = {10.1118/1.4860255},
url = {https://www.osti.gov/biblio/22251150}, journal = {Medical Physics},
issn = {0094-2405},
number = 2,
volume = 41,
place = {United States},
year = {Sat Feb 15 00:00:00 EST 2014},
month = {Sat Feb 15 00:00:00 EST 2014}
}