skip to main content

Title: ITAR: A modified TAR method to determine depth dose distribution for an ophthalmic device that performs kilovoltage x-ray pencil-beam stereotaxy

Purpose: New technology has been developed to treat age-related macular degeneration (AMD) using 100 kVp pencil-beams that enter the patient through the radio-resistant sclera with a depth of interest between 1.6 and 2.6 cm. Measurement of reference and relative dose in a kilovoltage x-ray beam with a 0.42 cm diameter field size and a 15 cm source to axis distance (SAD) is a challenge that is not fully addressed in current guidelines to medical physicists. AAPM's TG-61 gives dosimetry recommendations for low and medium energy x-rays, but not all of them are feasible to follow for this modality. Methods: An investigation was conducted to select appropriate equipment for the application. PTW's Type 34013 Soft X-Ray Chamber (Freiburg, Germany) and CIRS's Plastic Water LR (Norfolk, VA) were found to be the best available options. Attenuation curves were measured with minimal scatter contribution and thus called Low Scatter Tissue Air Ratio (LSTAR). A scatter conversion coefficient (C{sub scat}) was derived through Monte Carlo radiation transport simulation using MCNPX (LANL, Los Alamos, NM) to quantify the difference between a traditional TAR curve and the LSTAR curve. A material conversion coefficient (C{sub mat}) was determined through experimentation to evaluate the difference in attenuation propertiesmore » between water and Plastic Water LR. Validity of performing direct dosimetry measurements with a source to detector distance other than the treatment distance, and therefore a different field size due to a fixed collimator, was explored. A method—Integrated Tissue Air Ratio (ITAR)—has been developed that isolates each of the three main radiological effects (distance from source, attenuation, and scatter) during measurement, and integrates them to determine the dose rate to the macula during treatment. Results: LSTAR curves were determined to be field size independent within the range explored, indicating that direct dosimetry measurements may be performed with a source to detector distance of 20 cm even though the SAD is 15 cm during treatment. C{sub scat} varied from 1.102 to 1.106 within the range of depths of interest. The experimental variance among repeated measurements of C{sub mat} was larger than depth dependence, so C{sub mat} was estimated as1.019 for all depths of interest. Conclusions: Equipment selection, measurement techniques, and formalism for the determination of dose rate to the macula during stereotaxy for AMD have been determined and are strongly recommended by the authors of this paper to be used by clinical medical physicists.« less
Authors:
; ; ;  [1]
  1. Oraya Therapeutics, Inc., Newark, California 94560 (United States)
Publication Date:
OSTI Identifier:
22251053
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 2; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; ATTENUATION; BEAMS; DEPTH DOSE DISTRIBUTIONS; DISTANCE; DOSE RATES; DOSIMETRY; EYES; LANL; MONTE CARLO METHOD; PLASTICS; SOFT X RADIATION