skip to main content

SciTech ConnectSciTech Connect

Title: The Picard–Fuchs equations for complete hyperelliptic integrals of even order curves, and the actions of the generalized Neumann system

We consider a family of genus 2 hyperelliptic curves of even order and obtain explicitly the systems of 5 linear ordinary differential equations for periods of the corresponding Abelian integrals of first, second, and third kind, as functions of some parameters of the curves. The systems can be regarded as extensions of the well-studied Picard–Fuchs equations for periods of complete integrals of first and second kind on odd hyperelliptic curves. The periods we consider are linear combinations of the action variables of several integrable systems, in particular the generalized Neumann system with polynomial separable potentials. Thus the solutions of the extended Picard–Fuchs equations can be used to study various properties of the actions.
Authors:
;  [1]
  1. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Barcelona E-08028 (Spain)
Publication Date:
OSTI Identifier:
22251017
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 3; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; DIAGRAMS; DIFFERENTIAL EQUATIONS; INTEGRALS; MATHEMATICAL SOLUTIONS; POLYNOMIALS; POTENTIALS