skip to main content

Title: The adsorption properties of CO molecules on single-layer graphene nanoribbons

The adsorption properties of CO molecules on graphene nanoribbons (GRNs) are studied through the molecular dynamics (MD) method. The AIREBO and LJ potentials are used to describe the C-C bonds in GNR and the interactions between the carbon atoms in GNR and CO molecules, respectively. The influences of the environmental pressure and charge density on the adsorption properties of CO molecules on GRNs are taken into account in this study. The effects of charges carried by GNRs on the adsorption properties are investigated in two aspects: atom distribution and energy evolution. Its observation from the results shows that the Coulomb force plays a more important role in the adsorption phenomenon than the van der Waals force, and the higher the charge density is, the larger the amount of the adsorbed CO molecules becomes. Low charge densities (<3.291 C/m{sup 2}) do little for the system, that is to say, the GNRs present similar properties to the ones with no charges. However, relatively high charge densities (>4.937 C/m{sup 2}) have an obvious effect on the whole system. The results also indicate that the environmental pressure has great influence on the adsorption properties of COs on GRN, and the higher the pressure is,more » the greater the adsorption energy becomes.« less
Authors:
; ;  [1]
  1. School of Electrical and Mechanical Engineering, Xidian University, Xi'an 710071 (China)
Publication Date:
OSTI Identifier:
22250889
Resource Type:
Journal Article
Resource Relation:
Journal Name: AIP Advances; Journal Volume: 4; Journal Issue: 3; Other Information: (c) 2014 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY; ADSORPTION; CARBON MONOXIDE; CHARGE DENSITY; DISTRIBUTION; GRAPHENE; INTERACTIONS; MOLECULAR DYNAMICS METHOD; MOLECULES; NANOSTRUCTURES; VAN DER WAALS FORCES