skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A multicriteria framework with voxel-dependent parameters for radiotherapy treatment plan optimization

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.4866886· OSTI ID:22250830

Purpose: To establish a new mathematical framework for radiotherapy treatment optimization with voxel-dependent optimization parameters. Methods: In the treatment plan optimization problem for radiotherapy, a clinically acceptable plan is usually generated by an optimization process with weighting factors or reference doses adjusted for a set of the objective functions associated to the organs. Recent discoveries indicate that adjusting parameters associated with each voxel may lead to better plan quality. However, it is still unclear regarding the mathematical reasons behind it. Furthermore, questions about the objective function selection and parameter adjustment to assure Pareto optimality as well as the relationship between the optimal solutions obtained from the organ-based and voxel-based models remain unanswered. To answer these questions, the authors establish in this work a new mathematical framework equipped with two theorems. Results: The new framework clarifies the different consequences of adjusting organ-dependent and voxel-dependent parameters for the treatment plan optimization of radiation therapy, as well as the impact of using different objective functions on plan qualities and Pareto surfaces. The main discoveries are threefold: (1) While in the organ-based model the selection of the objective function has an impact on the quality of the optimized plans, this is no longer an issue for the voxel-based model since the Pareto surface is independent of the objective function selection and the entire Pareto surface could be generated as long as the objective function satisfies certain mathematical conditions; (2) All Pareto solutions generated by the organ-based model with different objective functions are parts of a unique Pareto surface generated by the voxel-based model with any appropriate objective function; (3) A much larger Pareto surface is explored by adjusting voxel-dependent parameters than by adjusting organ-dependent parameters, possibly allowing for the generation of plans with better trade-offs among different clinical objectives. Conclusions: The authors have developed a mathematical framework for radiotherapy treatment optimization using voxel-based parameters. The authors can improve the plan quality by adjusting voxel-based weighting factors and exploring the unique and large Pareto surface which include all the Pareto surfaces that can be generated by organ-based model using different objective functions.

OSTI ID:
22250830
Journal Information:
Medical Physics, Vol. 41, Issue 4; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English

Similar Records

A DVH-guided IMRT optimization algorithm for automatic treatment planning and adaptive radiotherapy replanning
Journal Article · Sun Jun 15 00:00:00 EDT 2014 · Medical Physics · OSTI ID:22250830

EUD-based biological optimization for carbon ion therapy
Journal Article · Sun Nov 15 00:00:00 EST 2015 · Medical Physics · OSTI ID:22250830

Dose-shaping using targeted sparse optimization
Journal Article · Mon Jul 15 00:00:00 EDT 2013 · Medical Physics · OSTI ID:22250830