skip to main content

Title: Superposition of super-integrable pseudo-Euclidean potentials in N = 2 with a fundamental constant of motion of arbitrary order in the momenta

It is shown that for any α,β∈R and k∈Z, the Hamiltonian H{sub k}=p{sub 1}p{sub 2}−αq{sub 2}{sup (2k+1)}q{sub 1}{sup (−2k−3)}−(β)/2 q{sub 2}{sup k}q{sub 1}{sup (−k−2)} is super-integrable, possessing fundamental constants of motion of degrees 2 and 2k + 2 in the momenta.
Authors:
 [1]
  1. I.M.I. and Dpto. de Geometría y Topología, Fac. CC. Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3, E-28040 Madrid (Spain)
Publication Date:
OSTI Identifier:
22250780
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; EUCLIDEAN SPACE; FUNDAMENTAL CONSTANTS; HAMILTONIANS; POISSON EQUATION; POLYNOMIALS; POTENTIALS