skip to main content

SciTech ConnectSciTech Connect

Title: Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.
Authors:
;  [1]
  1. Department of Physics, California State University Fresno, Fresno, California 93740-8031 (United States)
Publication Date:
OSTI Identifier:
22250776
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 4; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AHARONOV-BOHM EFFECT; ELECTRIC FIELDS; FUNCTIONS; GAUGE INVARIANCE; PHASE SHIFT; POTENTIALS; SOLENOIDS; TIME DEPENDENCE; VECTORS