skip to main content

Title: An implantable instrument for studying the long-term flight biology of migratory birds

The design of an instrument deployed in a project studying the high altitude Himalayan migrations of bar-headed geese (Anser indicus) is described. The electronics of this archival datalogger measured 22 × 14 × 6.5 mm, weighed 3 g, was powered by a ½AA-sized battery weighing 10 g and housed in a transparent biocompatible tube sealed with titanium electrodes for electrocardiography (ECG). The combined weight of 32 g represented less than 2% of the typical bodyweight of the geese. The primary tasks of the instrument were to continuously record a digitised ECG signal for heart-rate determination and store 12-bit triaxial accelerations sampled at 100 Hz with 15% coverage over each 2 min period. Measurement of atmospheric pressure provided an indication of altitude and rate of ascent or descent during flight. Geomagnetic field readings allowed for latitude estimation. These parameters were logged twice per minute along with body temperature. Data were stored to a memory card of 8 GB capacity. Instruments were implanted in geese captured on Mongolian lakes during the breeding season when the birds are temporarily flightless due to moulting. The goal was to collect data over a ten month period, covering both southward and northward migrations. This imposed extrememore » constraints on the design's power consumption. Raw ECG can be post-processed to obtain heart-rate, allowing improved rejection of signal interference due to strenuous activity of locomotory muscles during flight. Accelerometry can be used to monitor wing-beat frequency and body kinematics, and since the geese continued to flap their wings continuously even during rather steep descents, act as a proxy for biomechanical power. The instrument enables detailed investigation of the challenges faced by the geese during these arduous migrations which typically involve flying at extreme altitudes through cold, low density air where oxygen availability is significantly reduced compared to sea level.« less
Authors:
;  [1]
  1. Department of Biological Sciences, Bangor University, Gwynedd LL57 2UW (United Kingdom)
Publication Date:
OSTI Identifier:
22250730
Resource Type:
Journal Article
Resource Relation:
Journal Name: Review of Scientific Instruments; Journal Volume: 85; Journal Issue: 1; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ALTITUDE; ANIMAL BREEDING; BIOLOGY; BODY TEMPERATURE; GEESE; GEOMAGNETIC FIELD; LAKES; MIGRATION; SEA LEVEL; TITANIUM