skip to main content

Title: Correction for FDG PET dose extravasations: Monte Carlo validation and quantitative evaluation of patient studies

Purpose: Current procedure guidelines for whole body [18F]fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography (PET) state that studies with visible dose extravasations should be rejected for quantification protocols. Our work is focused on the development and validation of methods for estimating extravasated doses in order to correct standard uptake value (SUV) values for this effect in clinical routine. Methods: One thousand three hundred sixty-seven consecutive whole body FDG-PET studies were visually inspected looking for extravasation cases. Two methods for estimating the extravasated dose were proposed and validated in different scenarios using Monte Carlo simulations. All visible extravasations were retrospectively evaluated using a manual ROI based method. In addition, the 50 patients with higher extravasated doses were also evaluated using a threshold-based method. Results: Simulation studies showed that the proposed methods for estimating extravasated doses allow us to compensate the impact of extravasations on SUV values with an error below 5%. The quantitative evaluation of patient studies revealed that paravenous injection is a relatively frequent effect (18%) with a small fraction of patients presenting considerable extravasations ranging from 1% to a maximum of 22% of the injected dose. A criterion based on the extravasated volume and maximum concentration was established in order to identifymore » this fraction of patients that might be corrected for paravenous injection effect. Conclusions: The authors propose the use of a manual ROI based method for estimating the effectively administered FDG dose and then correct SUV quantification in those patients fulfilling the proposed criterion.« less
Authors:
;  [1] ;  [2] ;  [3] ; ; ;  [4] ; ;  [5] ;  [6] ;  [7] ;  [3] ;  [8]
  1. Fundación Ramón Domínguez, Santiago de Compostela, Galicia (Spain)
  2. (USC), 15782, Galicia (Spain)
  3. (IDIS), Santiago de Compostela, 15706, Galicia (Spain)
  4. Servicio de Radiofísica y Protección Radiológica, Complexo Hospitalario Universidade de Santiago de Compostela (USC), 15782, Galicia (Spain)
  5. Servicio de Medicina Nuclear, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Galicia, Spain and Grupo de Imaxe Molecular, Instituto de Investigación Sanitarias (IDIS), Santiago de Compostela, 15706, Galicia (Spain)
  6. Servicio de Radiofísica y Protección Radiológica, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Galicia (Spain)
  7. Servicio de Medicina Nuclear, Complexo Hospitalario Universidade de Santiago de Compostela (USC), 15782, Galicia (Spain)
  8. (Spain)
Publication Date:
OSTI Identifier:
22250711
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 41; Journal Issue: 5; Other Information: (c) 2014 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; COMPUTERIZED SIMULATION; EVALUATION; FLUORINE 18; GLUCOSE; INJECTION; MONTE CARLO METHOD; PATIENTS; POSITRON COMPUTED TOMOGRAPHY; RADIATION DOSES; RECOMMENDATIONS; VALIDATION