skip to main content

Title: On the mathematical treatment of the Born-Oppenheimer approximation

Motivated by the paper by Sutcliffe and Woolley [“On the quantum theory of molecules,” J. Chem. Phys. 137, 22A544 (2012)], we present the main ideas used by mathematicians to show the accuracy of the Born-Oppenheimer approximation for molecules. Based on mathematical works on this approximation for molecular bound states, in scattering theory, in resonance theory, and for short time evolution, we give an overview of some rigorous results obtained up to now. We also point out the main difficulties mathematicians are trying to overcome and speculate on further developments. The mathematical approach does not fit exactly to the common use of the approximation in Physics and Chemistry. We criticize the latter and comment on the differences, contributing in this way to the discussion on the Born-Oppenheimer approximation initiated by Sutcliffe and Woolley. The paper neither contains mathematical statements nor proofs. Instead, we try to make accessible mathematically rigourous results on the subject to researchers in Quantum Chemistry or Physics.
Authors:
 [1]
  1. AGM, UMR 8088 du CNRS, Université de Cergy-Pontoise, Département de mathématiques, site de Saint Martin, 2 avenue Adolphe Chauvin, F-95000 Pontoise (France)
Publication Date:
OSTI Identifier:
22250666
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Mathematical Physics; Journal Volume: 55; Journal Issue: 5; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; BORN-OPPENHEIMER APPROXIMATION; BOUND STATE; CHEMISTRY; EVOLUTION; MOLECULES; SCATTERING