skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapamycin targeting mTOR and hedgehog signaling pathways blocks human rhabdomyosarcoma growth in xenograft murine model

Journal Article · · Biochemical and Biophysical Research Communications
 [1]; ;  [2];  [3];  [1];  [2]
  1. Division of Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, 1600 7th Avenue South, ACC 414, Birmingham, AL 35233 (United States)
  2. Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, 1530 3rd Avenue South, VH 509, Birmingham, AL 35294-0019 (United States)
  3. Division of Cancer Prevention, National Cancer Institute, Bethesda (United States)

Graphical abstract: Intervention of poorly differentiated RMS by rapamycin: In poorly differentiated RMS, rapamycin blocks mTOR and Hh signaling pathways concomitantly. This leads to dampening in cell cycle regulation and induction of apoptosis. This study provides a rationale for the therapeutic intervention of poorly differentiated RMS by treating patients with rapamycin alone or in combination with other chemotherapeutic agents. -- Highlights: •Rapamycin abrogates RMS tumor growth by modulating proliferation and apoptosis. •Co-targeting mTOR/Hh pathways underlie the molecular basis of effectiveness. •Reduction in mTOR/Hh pathways diminish EMT leading to reduced invasiveness. -- Abstract: Rhabdomyosarcomas (RMS) represent the most common childhood soft-tissue sarcoma. Over the past few decades outcomes for low and intermediate risk RMS patients have slowly improved while patients with metastatic or relapsed RMS still face a grim prognosis. New chemotherapeutic agents or combinations of chemotherapies have largely failed to improve the outcome. Based on the identification of novel molecular targets, potential therapeutic approaches in RMS may offer a decreased reliance on conventional chemotherapy. Thus, identification of effective therapeutic agents that specifically target relevant pathways may be particularly beneficial for patients with metastatic and refractory RMS. The PI3K/AKT/mTOR pathway has been found to be a potentially attractive target in RMS therapy. In this study, we provide evidence that rapamycin (sirolimus) abrogates growth of RMS development in a RMS xenograft mouse model. As compared to a vehicle-treated control group, more than 95% inhibition in tumor growth was observed in mice receiving parenteral administration of rapamycin. The residual tumors in rapamycin-treated group showed significant reduction in the expression of biomarkers indicative of proliferation and tumor invasiveness. These tumors also showed enhanced apoptosis. Interestingly, the mechanism by which rapamycin diminished RMS tumor growth involved simultaneous inhibition of mTOR and hedgehog (Hh) pathways. Diminution in these pathways in this model of RMS also inhibited epithelial mesenchymal transition (EMT) which then dampened the invasiveness of these tumors. Our data provide bases for using rapamycin either alone or in combination with traditional chemotherapeutic drugs to block the pathogenesis of high risk RMS.

OSTI ID:
22239623
Journal Information:
Biochemical and Biophysical Research Communications, Vol. 435, Issue 4; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); ISSN 0006-291X
Country of Publication:
United States
Language:
English