skip to main content

Title: Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows

This work addresses the issue of particle mass consistency in Large Eddy Simulation/Probability Density Function (LES/PDF) methods for turbulent reactive flows. Numerical schemes for the implicit and explicit enforcement of particle mass consistency (PMC) are introduced, and their performance is examined in a representative LES/PDF application, namely the Sandia–Sydney Bluff-Body flame HM1. A new combination of interpolation schemes for velocity and scalar fields is found to better satisfy PMC than multilinear and fourth-order Lagrangian interpolation. A second-order accurate time-stepping scheme for stochastic differential equations (SDE) is found to improve PMC relative to Euler time stepping, which is the first time that a second-order scheme is found to be beneficial, when compared to a first-order scheme, in an LES/PDF application. An explicit corrective velocity scheme for PMC enforcement is introduced, and its parameters optimized to enforce a specified PMC criterion with minimal corrective velocity magnitudes.
Authors:
;
Publication Date:
OSTI Identifier:
22230844
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 257; Journal Issue: Part A; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ALGORITHMS; COMPARATIVE EVALUATIONS; DIFFERENTIAL EQUATIONS; INTERPOLATION; LAGRANGIAN FUNCTION; LARGE-EDDY SIMULATION; MASS; MONTE CARLO METHOD; PARTICLES; PROBABILITY DENSITY FUNCTIONS; SCALAR FIELDS; STOCHASTIC PROCESSES; VELOCITY