skip to main content

SciTech ConnectSciTech Connect

Title: Phase field method to optimize dielectric devices for electromagnetic wave propagation

We discuss a phase field method for shape optimization in the context of electromagnetic wave propagation. The proposed method has the same functional capabilities as the level set method for shape optimization. The first advantage of the method is the simplicity of computation, since extra operations such as re-initialization of functions are not required. The second is compatibility with the topology optimization method due to the similar domain representation and the sensitivity analysis. Structural shapes are represented by the phase field function defined in the design domain, and this function is optimized by solving a time-dependent reaction diffusion equation. The artificial double-well potential function used in the equation is derived from sensitivity analysis. We study four types of 2D or 2.5D (axisymmetric) optimization problems. Two are the classical problems of photonic crystal design based on the Bloch theory and photonic crystal wave guide design, and two are the recent topics of designing dielectric left-handed metamaterials and dielectric ring resonators.
Authors:
;
Publication Date:
OSTI Identifier:
22230841
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 257; Journal Issue: Part A; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; AXIAL SYMMETRY; BLOCH THEORY; CALCULATION METHODS; COMPATIBILITY; CRYSTALS; DESIGN; DIELECTRIC MATERIALS; DIFFUSION EQUATIONS; ELECTROMAGNETIC RADIATION; FUNCTIONS; OPTIMIZATION; POTENTIALS; RESONATORS; SENSITIVITY ANALYSIS; SHAPE; TIME DEPENDENCE; TOPOLOGY