skip to main content

Title: Phase-coexistence simulations of fluid mixtures by the Markov Chain Monte Carlo method using single-particle models

We present a single-particle Lennard–Jones (L-J) model for CO{sub 2} and N{sub 2}. Simplified L-J models for other small polyatomic molecules can be obtained following the methodology described herein. The phase-coexistence diagrams of single-component systems computed using the proposed single-particle models for CO{sub 2} and N{sub 2} agree well with experimental data over a wide range of temperatures. These diagrams are computed using the Markov Chain Monte Carlo method based on the Gibbs-NVT ensemble. This good agreement validates the proposed simplified models. That is, with properly selected parameters, the single-particle models have similar accuracy in predicting gas-phase properties as more complex, state-of-the-art molecular models. To further test these single-particle models, three binary mixtures of CH{sub 4}, CO{sub 2} and N{sub 2} are studied using a Gibbs-NPT ensemble. These results are compared against experimental data over a wide range of pressures. The single-particle model has similar accuracy in the gas phase as traditional models although its deviation in the liquid phase is greater. Since the single-particle model reduces the particle number and avoids the time-consuming Ewald summation used to evaluate Coulomb interactions, the proposed model improves the computational efficiency significantly, particularly in the case of high liquid density where the acceptancemore » rate of the particle-swap trial move increases. We compare, at constant temperature and pressure, the Gibbs-NPT and Gibbs-NVT ensembles to analyze their performance differences and results consistency. As theoretically predicted, the agreement between the simulations implies that Gibbs-NVT can be used to validate Gibbs-NPT predictions when experimental data is not available.« less
Authors:
 [1] ;  [2]
  1. Center for Numerical Porous Media, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
  2. Center for Numerical Porous Media, Applied Mathematics and Computational Science, Earth and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
Publication Date:
OSTI Identifier:
22230793
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 249; Other Information: Copyright (c) 2013 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICAL METHODS AND COMPUTING; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ACCURACY; BINARY MIXTURES; CARBON DIOXIDE; MARKOV PROCESS; METHANE; MOLECULAR MODELS; MOLECULES; MONTE CARLO METHOD; NON-PROLIFERATION TREATY; SIMULATION; SINGLE-PARTICLE MODEL