skip to main content

SciTech ConnectSciTech Connect

Title: Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation

Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L. Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eightmore » of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7.5 mm across algorithms for scenarios I to III, respectively. The greatest accuracy was exhibited by the original Horn and Schunck optical flow algorithm. In this case, for scenario III (erased FMs not contributing to driving the DIR calculation), the mean error was half that of the modified demons algorithm (which exhibited the greatest error), across all deformations. Some algorithms failed to reproduce the geometry at all, while others accurately deformed high contrast features but not low-contrast regions—indicating poor interpolation between landmarks.Conclusions: The accuracy of DIR algorithms was quantitatively evaluated using a tissue equivalent, mass, and density conserving DEFGEL phantom. For the model studied, optical flow algorithms performed better than demons algorithms, with the original Horn and Schunck performing best. The degree of error is influenced more by the magnitude of displacement than the geometric complexity of the deformation. As might be expected, deformation is estimated less accurately for low-contrast regions than for high-contrast features, and the method presented here allows quantitative analysis of the differences. The evaluation of registration accuracy through observation of the same high contrast features that drive the DIR calculation is shown to be circular and hence misleading.« less
Authors:
; ;  [1] ;  [1] ;  [2] ;  [2] ;  [3] ;  [4]
  1. School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne 3000 (Australia)
  2. (Australia)
  3. School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne 3000, Australia and Medical Physics, William Buckland Radiotherapy Centre, The Alfred Hospital, Melbourne 3004 (Australia)
  4. School of Applied Sciences and Health Innovations Research Institute, RMIT University, Melbourne 3000, Australia and Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne 3002 (Australia)
Publication Date:
OSTI Identifier:
22230763
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 40; Journal Issue: 10; Other Information: (c) 2013 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 61 RADIATION PROTECTION AND DOSIMETRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; ACCURACY; ALGORITHMS; BIOMEDICAL RADIOGRAPHY; CHEMICAL ANALYSIS; COMPUTERIZED TOMOGRAPHY; DOSIMETRY; GELS; IMAGE PROCESSING; IMAGES; ORGANS; PHANTOMS; RADIATION DOSES; RADIOTHERAPY