skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NUHOWS - Storage and Transportation of Irradiated Reactor Components in Large Packages - 13439

Conference ·
OSTI ID:22225058
 [1]
  1. Transnuclear, Inc., 7135 Minstrel Way, Columbia, MD 21045 (United States)

Most irradiated reactor components (hardware such as Control Rod Blades, Fuel Channels, Poison Curtains, etc.) generated at reactors previously required significant processing for size reduction due to the available transportation casks not being physically capable of containing unprocessed material. As of July 1, 2008, disposal for this typical waste class (B and C) became inaccessible (for the major part of the nation) due to the Barnwell, SC disposal facility being closed to all but its three compact states (CT, NJ and SC). Currently in the United States, most facilities are storing their irradiated hardware on-site in the spent fuel pools. Until recently with the opening of the Waste Control Specialists' Texas disposal facility, utilities faced the challenges of spent fuel pool space and capacity management. However, even with WCS's disposal availability, the site currently has annual Curie limitations for disposal, which will continue to promote interim on-site storage until such time as disposal is available. In response, Transnuclear Inc., (TN) an AREVA company, proceeded with designing a new large Radioactive Waste Container (RWC) that can be used to package irradiated hardware without the need for significant processing. The design features of the RWC allows for intermittent loadings of the hardware for better packaging efficiency, higher packaging density, space savings and reduced cost. This RWC is also compatible with TN's on-site modular vault storage system. Once completely loaded, the RWC can be transported to an on-site storage facility, an off-site storage facility and/or an available disposal facility. To accommodate the transportation, TN has designed a large transportation cask, the MP197HB. As the original design was for transporting fuel, it contains the necessary shielding to allow for the transport of unprocessed irradiated reactor components, while significantly reducing the amount of irradiated hardware shipments required with the use of the new RWC. This paper provides information on the unique design features of the RWC, storage module vaults, MP197HB Transportation Cask and cost saving benefits of using the large RWC for packaging, storage, transport and disposal. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9-332, Tempe, AZ 85282 (United States)
OSTI ID:
22225058
Report Number(s):
INIS-US-13-WM-13439; TRN: US14V0603046013
Resource Relation:
Conference: WM2013: Waste Management Conference: International collaboration and continuous improvement, Phoenix, AZ (United States), 24-28 Feb 2013; Other Information: Country of input: France; refs.
Country of Publication:
United States
Language:
English